Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 983670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033219

RESUMO

Introduction: Female sexual dysfunction affects approximately 40% of women in the United States, yet few therapeutic options exist for these patients. The melanocortin system is a new treatment target for hypoactive sexual desire disorder (HSDD), but the neuronal pathways involved are unclear. Methods: In this study, the sexual behavior of female MC4R knockout mice lacking melanocortin 4 receptors (MC4Rs) was examined. The mice were then bred to express MC4Rs exclusively on Sim1 neurons (tbMC4RSim1 mice) or on oxytocin neurons (tbMC4ROxt mice) to examine the effect on sexual responsiveness. Results: MC4R knockout mice were found to approach males less and have reduced receptivity to copulation, as indicated by a low lordosis quotient. These changes were independent of body weight. Lordosis behavior was normalized in tbMC4RSim1 mice and improved in tbMC4ROxt mice. In contrast, approach behavior was unchanged in tbMC4RSim1 mice but greatly increased in tbMC4ROxt animals. The changes were independent of melanocortin-driven metabolic effects. Discussion: These results implicate MC4R signaling in Oxt neurons in appetitive behaviors and MC4R signaling in Sim1 neurons in female sexual receptivity, while suggesting melanocortin-driven sexual function does not rely on metabolic neural circuits.


Assuntos
Lordose , Receptor Tipo 4 de Melanocortina , Masculino , Camundongos , Animais , Feminino , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Lordose/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Neurônios/metabolismo , Camundongos Knockout , Melanocortinas/metabolismo , Proteínas Repressoras , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
2.
Horm Behav ; 143: 105195, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35580373

RESUMO

Thermoregulation is the physiological process by which an animal regulates body temperature in response to its environment. It is known that galanin, a neuropeptide widely distributed throughout the central nervous system and secreted by the gut, plays a role in thermoregulatory behaviors and metabolism. We tested the ability of the novel neuropeptide spexin, which shares sequence homology to galanin, to regulate these functions in female mice. Supraphysiological levels of spexin in C57BL/6 mice did not lead to weight loss after 50 days of treatment. Behavioral analysis of long-term spexin treatment showed it decreased anxiety and increased thermoregulatory nest building, which was not observed when mice were housed at thermoneutral temperatures. Treatment also disrupted the thermogenic profile of brown and white adipose tissue, decreasing mRNA expression of Ucp1 in BAT and immunodetection of ß3-adrenergic receptors in gWAT. Our results reveal novel functions for spexin as a modulator of thermoregulatory behaviors and adipose tissue metabolism.


Assuntos
Tecido Adiposo Marrom , Galanina , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Regulação da Temperatura Corporal , Feminino , Galanina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...